These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Adjuvant strategies for prevention of glomerulosclerosis.
    Author: McCarty MF.
    Journal: Med Hypotheses; 2006; 67(6):1277-96. PubMed ID: 16828231.
    Abstract:
    The glomerulosclerosis which frequently complicates diabetes and severe hypertension is mediated primarily by increased mesangial production and activation of transforming growth factor-beta (TGF-beta), which acts on mesangial cells to boost their production of matrix proteins while suppressing extracellular proteolytic activity. Hyperglycemia and glomerular hypertension work in various complementary ways to stimulate superoxide production via NADPH oxidase in mesangial cells; the resulting oxidant stress results in the induction and activation of TFG-beta. Nitric oxide, generated by glomerular capillaries and by mesangial cells themselves, functions physiologically to oppose mesangial TGF-beta overproduction; however, NO bioactivity is compromised by oxidant stress. In addition to low-protein diets and drugs that suppress angiotensin II activity, a variety of other agents and measures may have potential for impeding the process of glomerulosclerosis. These include vitamin E, which blunts the rise in mesangial diacylglycerol levels induced by hyperglycemia; statins and (possibly) policosanol, which down-regulate NADPH oxidase activity by diminishing isoprenylation of Rac1; lipoic acid, whose potent antioxidant activity antagonizes the impact of oxidant stress on TGF-beta expression; pyridoxamine, which inhibits production of advanced glycation endproducts; arginine, high-dose folate, vitamin C, and salt restriction, which may support glomerular production of nitric oxide; and estrogen and soy isoflavones, which may induce nitric oxide synthase in glomerular capillaries while also interfering with TGF-beta signaling. Further research along these lines may enable the development of complex nutraceuticals which have important clinical utility for controlling and preventing glomerulosclerosis and renal failure. Most of these measures may likewise reduce risk for left ventricular hypertrophy in hypertensives, inasmuch as the signaling mechanisms which mediate this disorder appear similar to those involved in glomerulosclerosis.
    [Abstract] [Full Text] [Related] [New Search]