These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nitric oxide mediates interactions between GABAA receptors and adenosine A1 receptors in the rat hippocampus.
    Author: Fragata IR, Ribeiro JA, Sebastião AM.
    Journal: Eur J Pharmacol; 2006 Aug 14; 543(1-3):32-9. PubMed ID: 16831416.
    Abstract:
    Adenosine and gamma-aminobutyric acid (GABA) are both major inhibitory neuromodulators/neurotransmitters in the CNS. We now investigated if endogenous GABA modulates adenosine A(1)-mediated action on synaptic transmission in the hippocampus. Field excitatory postsynaptic potentials (fEPSP) were recorded from the CA(1) area of rat hippocampal slices. The adenosine analogue 2-chloroadenosine (0.15-1 microM) inhibited synaptic transmission with an EC(50) of 398 nM. Blocking GABA(A) receptors with the specific antagonists, bicuculline (10 microM) or picrotoxin (10 microM) potentiated the inhibitory effect of 2-chloroadenosine. The concentration-response curve for 2-chloroadenosine was displaced to the left by a factor of 2 (EC(50)=210 nM) in the presence of bicuculline (10 microM). GABA(A) receptor blockade also potentiated the action of N(6)-cyclopentyladenosine (CPA, 10 nM), a specific adenosine A(1) receptor agonist. Prevention of adenosine accumulation with adenosine deaminase (1 U/ml) did not influence bicuculline-induced potentiation of the effect of 2-chloroadenosine. The potentiation of adenosine A(1)-mediated response by bicuculline was abolished when nitric oxide (NO) synthase was inhibited with nitroarginine (100 microM), and when guanylyl cyclase was inhibited with 1H-[1,2,4]Oxadiazolo[4,3-a] quinoxalin-1-one (ODQ, 20 microM). The NO donors, (+/-)-S-nitroso-N-acetylpencillamine (SNAP, 300 microM) and diethylamine NONate diethylammonium salt (DEA/NO, 100 microM), significantly enhanced the inhibitory action of 2-chloroadenosine (150 nM). It is concluded that the blockade of GABA(A) receptors induces a potentiation of adenosine A(1) receptor-mediated inhibitory action, an effect that involves NO acting through guanylyl cyclase. Therefore, endogenous GABA might exert an inhibitory effect over adenosine A(1)-mediated responses in the hippocampus, which may represent a physiologic regulatory mechanism between the two inhibitory mediators.
    [Abstract] [Full Text] [Related] [New Search]