These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Impact of nuclear quantum effects on the molecular structure of bihalides and the hydrogen fluoride dimer. Author: Swalina C, Hammes-Schiffer S. Journal: J Phys Chem A; 2005 Nov 17; 109(45):10410-7. PubMed ID: 16833338. Abstract: The structural impact of nuclear quantum effects is investigated for a set of bihalides, [XHX](-), X = F, Cl, and Br, and the hydrogen fluoride dimer. Structures are calculated with the vibrational self-consistent-field (VSCF) method, the second-order vibrational perturbation theory method (VPT2), and the nuclear-electronic orbital (NEO) approach. In the VSCF and VPT2 methods, the vibrationally averaged geometries are calculated for the Born-Oppenheimer electronic potential energy surface. In the NEO approach, the hydrogen nuclei are treated quantum mechanically on the same level as the electrons, and mixed nuclear-electronic wave functions are calculated variationally with molecular orbital methods. Electron-electron and electron-proton dynamical correlation effects are included in the NEO approach using second-order perturbation theory (NEO-MP2). The nuclear quantum effects are found to alter the distances between the heavy atoms by 0.02-0.05 A for the systems studied. These effects are of similar magnitude as the electron correlation effects. For the bihalides, inclusion of the nuclear quantum effects with the NEO-MP2 or the VSCF method increases the X-X distance. The bihalide X-X distances are similar for both methods and are consistent with two-dimensional grid calculations and experimental values, thereby validating the use of the computationally efficient NEO-MP2 method for these types of systems. For the hydrogen fluoride dimer, inclusion of nuclear quantum effects decreases the F-F distance with the NEO-MP2 method and increases the F-F distance with the VSCF and VPT2 methods. The VPT2 F-F distances for the hydrogen fluoride dimer and the deuterated form are consistent with the experimentally determined values. The NEO-MP2 F-F distance is in excellent agreement with the distance obtained experimentally for a model that removes the large amplitude bending motions. The analysis of these calculations provides insight into the significance of electron-electron and electron-proton correlation, anharmonicity of the vibrational modes, and nonadiabatic effects for hydrogen-bonded systems.[Abstract] [Full Text] [Related] [New Search]