These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Theoretical study on structures and stability of C4P isomers. Author: Yu GT, Ding YH, Huang XR, Sun CC. Journal: J Phys Chem A; 2005 Mar 03; 109(8):1594-602. PubMed ID: 16833482. Abstract: The structures, energetics, spectroscopies, and stabilities of doublet C(4)P isomeric species are explored at the DFT/B3LYP, QCISD, and CCSD(T) (singlet-point) levels. A total of 12 minimum isomers and 27 interconversion transition states are located. At the CCSD(T)/6-311G(2df)//QCISD/6-311G(d)+ZPVE level, the lowest-lying isomer is a floppy CCCCP 1 (0.0 kcal/mol) mainly featuring a cumulenic structure |C=C=C=C=P*|, which differs much from the analogous C4N radical (|*C-C[triple bond]C-C[triple bond]N|). The quasi-linearity and the low bending mode of 1 are in contrast to the previous prediction. The second energetically followed isomer PC-cCCC 3 (14.9 kcal/mol) possesses a CCC ring-bonded to CP. The two low-lying isomers are separated by a high-energy ring-closure/open transition state (26.5 kcal/mol) and thus are very promising candidates for future laboratory and astrophysical detection. Furthermore, four high-energy isomers, that is, two bent isomers CCPCC 2 (68.4 kcal/mol) and CCPCC 2' (68.5 kcal/mol) and two cagelike species 10 (56.0 kcal/mol) and 11 (67.9 kcal/mol), are also stabilized by considerable barriers. The present work is the first detailed potential energy survey of CnP clusters and can provide useful information for the investigation of larger CnP radicals and for understanding the isomerism of P-doped C vaporization processes.[Abstract] [Full Text] [Related] [New Search]