These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cl-loss and H-loss dissociations in low-lying electronic states of the CH3Cl+ ion studied using multiconfiguration second-order perturbation theory. Author: Xi HW, Huang MB, Chen BZ, Li WZ. Journal: J Phys Chem A; 2005 May 19; 109(19):4381-7. PubMed ID: 16833769. Abstract: To examine the experimentally suggested scheme of the pathways for Cl- and H-loss dissociations of the CH(3)Cl(+) ion in the X(2)E (1(2)A', 1(2)A' '), A(2)A(1) (2(2)A'), and B(2)E (3(2)A', 2(2)A") states, the complete active space-self-consistent field (CASSCF) and multiconfiguration second-order perturbation theory (CASPT2) calculations with an atomic natural orbital (ANO) basis were performed for the 1(2)A' (X(2)A'), 1(2)A", 2(2)A', and 2(2)A'" states. The potential energy curves describing dissociation from the four C(s) states were obtained on the basis of the CASSCF partial geometry optimization calculations at fixed C-Cl or C-H distance values, followed by the CASPT2 energy calculations. The electronic states of the CH3(+) and CH(2)Cl(+) ions produced by Cl-loss and H-loss dissociation, respectively, were carefully determined. Our calculations confirm the following experimental facts: Cl-loss dissociation occurs from the 1(2)A' (X(2)A'), 1(2)A", and 2(2)A' states (all leading to CH3(+) (X(1)A(1)') + Cl), and H-loss dissociation does not occur from 2(2)A'. The calculations indicate that H-loss dissociation occurs from the 1(2)A' and 1(2)A' ' states (leading to CH(2)Cl(+) (X(1)A(1)) + H and CH(2)Cl(+) (1(3)A") + H, respectively). The calculations also indicate that H-loss dissociation occurs (with a barrier) from the 2(2)A" state (leading to CH(2)Cl(+) (1(1)A") + H), supporting the observation of direct dissociation from the B state to CH(2)Cl(+) and that Cl-loss dissociation occurs from the 2(2)A" state (leading to CH3(+) (1(3)A") + Cl), not supporting the previously proposed Cl-loss dissociation of the B state via internal conversion of B to A. The predicted appearance potential values for CH3(+) (X(1)A(1)') and CH(2)Cl(+) (X(1)A(1)) are in good agreement with the experimental values.[Abstract] [Full Text] [Related] [New Search]