These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of ATP-gated P2X7 receptors in fish provides new insights into the mechanism of release of the leaderless cytokine interleukin-1 beta.
    Author: López-Castejón G, Young MT, Meseguer J, Surprenant A, Mulero V.
    Journal: Mol Immunol; 2007 Feb; 44(6):1286-99. PubMed ID: 16837047.
    Abstract:
    Mammalian interleukin-1beta (IL-1beta) is produced as a biologically inactive precursor molecule, which is proteolytically cleaved to an active form by IL-1beta-converting enzyme (ICE) after the activation of P2X(7) receptor by extracellular ATP. The mechanism of IL-1beta release in non-mammalian vertebrates is largely unknown, although most of the IL-1beta gene sequences lack a conserved ICE recognition site. Here we have cloned the P2X(7) receptor from the bony fish seabream and compared agonist and antagonist profiles at this and other non-mammalian P2X(7) receptors expressed in HEK cells, as well in seabream SAF-1 cells expressing endogenous P2X(7) receptors. We used this information to further investigate the mechanisms of IL-1beta release induced by mammalian and fish P2X(7) receptors. Despite phosphatidylserine externalization and cell permeabilization in seabream leukocytes after the addition of high BzATP concentrations, IL-1beta remained unprocessed within the cell. However, activation of rat P2X(7) receptors ectopically expressed in HEK293 together with human ICE led to the specific secretion of unprocessed seabream IL-1beta. In contrast, neither seabream nor zebrafish P2X(7) receptors induced the secretion of mammalian or fish IL-1beta when expressed in HEK293, while a chimeric receptor harboring the ATP-binding domain of seabream P2X(7) and the intracellular region of its rat counterpart did so. These findings indicate that P2X(7) receptor-mediated activation of ICE and release of IL-1beta result from different downstream signaling pathways and suggest that although the mechanisms involved in IL-1beta secretion are conserved throughout evolution, distinct inflammatory signals have been selected for the secretion of this cytokine in different vertebrates.
    [Abstract] [Full Text] [Related] [New Search]