These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Transplantation of embryonic neuroectodermal progenitor cells into the site of a photochemical lesion: immunohistochemical and electrophysiological analysis. Author: Anderová M, Kubinová S, Jelitai M, Neprasová H, Glogarová K, Prajerová I, Urdzíková L, Chvátal A, Syková E. Journal: J Neurobiol; 2006 Sep 01; 66(10):1084-100. PubMed ID: 16838369. Abstract: GFP labeled/NE-4C neural progenitor cells cloned from primary neuroectodermal cultures of p53- mouse embryos give rise to neurons when exposed to retinoic acid in vitro. To study their survival and differentiation in vivo, cells were transplanted into the cortex of 6-week-old rats, 1 week after the induction of a photochemical lesion or into noninjured cortex. The electrophysiological properties of GFP/NE-4C cells were studied in vitro (8-10 days after differentiation induction) and 4 weeks after transplantation using the whole-cell patch-clamp technique, and immunohistochemical analyses were carried out. After transplantation into a photochemical lesion, a large number of cells survived, some of which expressed the astrocytic marker GFAP. GFP/GFAP-positive cells, with an average resting membrane potential (Vrest) of -71.9 mV, displayed passive time- and voltage-independent K+ currents and, additionally, voltage-dependent A-type K+ currents (KA) and/or delayed outwardly rectifying K+ currents (KDR). Numerous GFP-positive cells expressed NeuN, betaIII-tubulin, or 68 kD neurofilaments. GFP/betaIII-tubulin-positive cells, with an average Vrest of -61.6 mV, were characterized by the expression of KA and KDR currents and tetrodotoxin-sensitive Na+ currents. GFP/NE-4C cells also gave rise to oligodendrocytes, based on the detection of oligodendrocyte-specific markers. Our results indicate that GFP/NE-4C neural progenitors transplanted into the site of a photochemical lesion give rise to neurons and astrocytes with membrane properties comparable to those transplanted into noninjured cortex. Therefore, GFP/NE-4C cells provide a suitable model for studying neuro- and gliogenesis in vivo. Further, our results suggest that embryonic neuroectodermal progenitor cells may hold considerable promise for the repair of ischemic brain lesions.[Abstract] [Full Text] [Related] [New Search]