These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Quantum-admixture model of high-spin <--> low-spin transition for ferrous complex molecules. Author: Xiao-Yu K, Kang-Wei Z. Journal: J Phys Chem A; 2005 Nov 10; 109(44):10129-37. PubMed ID: 16838933. Abstract: A quantum-admixture model for the d(6) configuration ferrous complex molecules with the high-spin <--> low-spin transition has been established by using the unified crystal-field-coupling (UCFC) scheme. A general study has been made on the spin transition of octahedrally coordinated d(6) complexes, and a special application has been given to an Fe(II) compound Fe(II)(TRIM)(2)(PhCO(2))(ClO(4)). The results show the following: (i) The quantum picture of the spin transition of a d(6) system, such as Fe(II), is much more complex than a simple transition between the pure (5)T(2g) and (1)A(1g) states as usually understood. In practice, owing to spin-orbit coupling, spin is no longer a good quantum number and there is no longer a pure (5)T(2g) or (1)A(1g) state. Each of them splits into substates and each substate is a linear combination of various multiplets. The high-spin --> low-spin transition of an octahedrally coordinated d(6) ion is practically the crossover of the two lowest substates of (5)T(2g) at the critical point. (ii) At the spin-transition critical point the magnetic moment mu(eff) approximately 5.22 mu(B), which is obviously different from the simple average of the mu(eff) values of high-spin and low-spin states but near the saturation value. (iii) The calculation of the effective molecular magnetic moment mu(eff) for an octahedrally coordinated Fe(II) ion shows that the mu(eff)-T curve is in good agreement with Lemercier et al.'s experiment and both the low-spin value mu(eff) = 0.51 mu(B) and the high-spin value mu(eff) = 5.4 mu(B) are comparable with the experimental values 0.76 mu(B) and 5.4 mu(B), respectively. (iv) The T dependence of the crystal field parameter Dq in the spin-transition region is approximately linear.[Abstract] [Full Text] [Related] [New Search]