These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Density functional study of the conformational space of 4C1 D-glucuronic acid.
    Author: Nyerges B, Kovács A.
    Journal: J Phys Chem A; 2005 Feb 10; 109(5):892-7. PubMed ID: 16838961.
    Abstract:
    The conformational space of (4)C(1) alpha- and beta-d-glucuronic acid was scanned by HF/3-21G(p) calculations followed by optimization of the 15 most stable structures for each, using the B3LYP density functional theory method in conjunction with a diffuse polarized valence triple-zeta basis set. We found a general preference of the alpha anomers in the isolated molecules in agreement with the large endo-anomeric hyperconjugation effects in these structures. From the other intramolecular interactions (exo-anomeric hyperconjugation, hydrogen-bonding, dipole-dipole, and steric interactions), the effect of the hydrogen bonding is the most pronounced and plays a major role in determining the stability order within the alpha and beta series. The most stable conformer of both alpha and beta (4)C(1) d-glucuronic acid is the structure with the maximum number (5) of intramolecular hydrogen bonds. Introduction of solvent (water) effects by the SCI-PCM model resulted in two characteristic changes of the energetic properties: the gas-phase stability order changed considerably, and the energy range of the 15 most stable conformers decreased from 30 to 15 kJ/mol. The geometrical parameters reflect well the superimposed effects of hyperconjugation and hydrogen-bonding interactions. Most characteristics are the variations of the C-O bond distances (within a range of 0.04 A) upon the combined intramolecular effects.
    [Abstract] [Full Text] [Related] [New Search]