These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interaction of ionic biomolecular building blocks with nonpolar solvents: acidity of the imidazole cation (Im+) probed by IR spectra of Im+-Ln complexes (L = Ar, N2; n < or = 3).
    Author: Andrei HS, Solcà N, Dopfer O.
    Journal: J Phys Chem A; 2005 Apr 28; 109(16):3598-607. PubMed ID: 16839026.
    Abstract:
    The intermolecular interaction between the imidazole cation (Im+ = C3N2H4+) and nonpolar ligands is characterized in the ground electronic state by infrared photodissociation (IRPD) spectroscopy of size-selected Im+-Ln complexes (L = Ar, N2) and quantum chemical calculations performed at the UMP2/6-311G(2df,2pd) and UB3LYP/6-311G(2df,2pd) levels of theory. The complexes are created in an electron impact cluster ion source, which predominantly produces the most stable isomers of a given cluster ion. The analysis of the size-dependent frequency shifts of both the N-H and the C-H stretch vibrations and the photofragmentation branching ratios provides valuable information about the stepwise microsolvation of Im+ in a nonpolar hydrophobic environment, including the formation of structural isomers, the competition between various intermolecular binding motifs (H-bonding and pi-bonding) and their interaction energies, and the acidity of both the CH and NH protons. In line with the calculations, the IRPD spectra show that the most stable Im+-L dimers feature planar H-bound equilibrium structures with nearly linear H-bonds of L to the acidic NH group of Im+. Further solvation occurs at the aromatic ring of Im+ via the formation of intermolecular pi-bonds. Comparison with neutral Im-Ar demonstrates the drastic effect of ionization on the topology of the intermolecular potential, in particular in the preferred aromatic substrate-nonpolar recognition motif, which changes from pi-bonding to H-bonding. .
    [Abstract] [Full Text] [Related] [New Search]