These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Proteolytic mRNA expression in response to acute resistance exercise in human single skeletal muscle fibers. Author: Yang Y, Jemiolo B, Trappe S. Journal: J Appl Physiol (1985); 2006 Nov; 101(5):1442-50. PubMed ID: 16840578. Abstract: The purpose of this study was to characterize changes in mRNA expression of select proteolytic markers in human slow-twitch [myosin heavy chain (MHC) I] and fast-twitch (MHC IIa) single skeletal muscle fibers following a bout of resistance exercise (RE). Muscle biopsies were obtained from the vastus lateralis of eight young healthy sedentary men [23 +/- 2 yr (mean +/- SD), 93 +/- 17 kg, 183 +/- 6 cm] before and 4 and 24 h after 3 x 10 repetitions of bilateral knee extensions at 65% of one repetition maximum. The mRNA levels of TNF-alpha, calpains 1 and 2, muscle RING (really interesting novel gene) finger-1 (MuRF-1), atrogin-1, caspase-3, B-cell leukemia/lymphoma (Bcl)-2, and Bcl-2-associated X protein (Bax) were quantified using real-time RT-PCR. Generally, MHC I fibers had higher (1.6- to 5.0-fold, P < 0.05) mRNA expression pre- and post-RE. One exception was a higher (1.6- to 3.9-fold, P < 0.05) Bax-to-Bcl-2 mRNA ratio in MHC IIa fibers pre- and post-RE. RE increased (1.4- to 4.8-fold, P < 0.05) MuRF-1 and caspase-3 mRNA levels 4-24 h post-RE in both fiber types, whereas Bax-to-Bcl-2 mRNA ratio increased 2.2-fold (P < 0.05) at 4 h post-RE only in MHC I fibers. These results suggest that MHC I fibers have a greater proteolytic mRNA expression pre- and post-RE compared with MHC IIa fibers. The greatest mRNA induction following RE was in MuRF-1 and caspase-3 in both fiber types. This altered and specific proteolytic mRNA expression among slow- and fast-twitch muscle fibers indicates that the ubiquitin/proteasomal and caspase pathways may play an important role in muscle remodeling with RE.[Abstract] [Full Text] [Related] [New Search]