These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification of phosphorylation sites in N-linked glycans by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Author: Takashiba M, Chiba Y, Jigami Y.
    Journal: Anal Chem; 2006 Jul 15; 78(14):5208-13. PubMed ID: 16841950.
    Abstract:
    Glycan phosphorylation is a significant feature of complex carbohydrate chemistry and glycobiology. For example, N-linked glycans containing mannose-6-phosphate (Man-6-P) residues play a key role as targeting signals for the transport of proteins from the Golgi apparatus to lysosomes. Structural information on Man-6-P glycans involved in transport of proteins is usually obtained using nuclear magnetic resonance (NMR) spectroscopy. However, an alternative and simple method with comparable accuracy is desirable because large amounts of samples and special techniques are required for structural analysis using NMR. Recently, postsource decay (PSD) fragment spectra obtained by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) have provided critical information on complex carbohydrates. Since few Man-6-P-containing glycans are commercially available, very little information has been collected on the mass spectrometry of phosphorylated glycans. In this report, four kinds of phosphorylated glycans labeled with 2-aminopyridine (PA) were purified from yeast mannan, and their PSD spectra were measured in the positive ion mode. The phospho-6-O-mannose monoester linkages (PO3H-Man) in glycans are stable, although cleavage of the mannose-1-phosphate linkage (Man-alpha-1-PO3H) occurs readily. Fragment ions indicated the presence of the alpha-1,3-branching chain of an N-linked high-mannose-type glycan, and characteristic fragmentation patterns were observed for phosphorylated glycans. On the basis of the MALDI-PSD spectra, we deduced fragmentation rules for phosphorylated N-glycans that will be valuable for distinguishing the position of phosphorylation.
    [Abstract] [Full Text] [Related] [New Search]