These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inactivation of gram-negative bacteria in milk and banana juice by hen egg white and lambda lysozyme under high hydrostatic pressure. Author: Nakimbugwe D, Masschalck B, Anim G, Michiels CW. Journal: Int J Food Microbiol; 2006 Oct 15; 112(1):19-25. PubMed ID: 16843561. Abstract: The effect of hen egg white lysozyme (HEWL) and bacteriophage lambda lysozyme (LaL) in combination with high pressure (HP) treatment on the inactivation of four gram-negative bacteria (Escherichia coli O157:H7, Shigella flexneri, Yersinia enterocolitica and Salmonella typhimurium), was studied in skim milk (pH 6.8; a(w) 0.997) and in banana juice (pH 3.8; a(w) 0.971). In the absence of lysozymes, S. flexneri was more sensitive to HP in milk than in banana juice, while the opposite was observed for the other three bacteria. In combination with HP treatment, LaL was more effective than HEWL on all bacteria in both milk and banana juice. Depending on the bacteria, inactivation levels in banana juice were increased from 0.4-2.7 log units by HP treatment alone to 3.6-6.5 log units in the presence of 224 U/ml LaL. Bacterial inactivation in milk was also enhanced by LaL but only by 0.5-2.1 log units. Under the experimental conditions used, LaL was more effective in banana juice than in milk, while the effectiveness of HEWL under the same conditions was not significantly affected by the food matrix. This effect could be ascribed to the low pH of the banana juice since LaL was also more effective on E. coli in buffer at pH 3.8 than at pH 6.8. Since neither LaL nor HEWL are enzymatically active at pH 3.8, we analysed bacterial lysis after HP treatment in the presence of these enzymes, and found that inactivation proceeds through a non-lytic mechanism at pH 3.8 and a lytic mechanism at pH 6.8. Based on these results, LaL may offer interesting perspectives for use as an extra hurdle in high pressure food preservation.[Abstract] [Full Text] [Related] [New Search]