These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The effect of erbium on the adsorption and photodegradation of orange I in aqueous Er3+-TiO2 suspension.
    Author: Liang CH, Hou MF, Zhou SG, Li FB, Liu CS, Liu TX, Gao YX, Wang XG, Lü JL.
    Journal: J Hazard Mater; 2006 Dec 01; 138(3):471-8. PubMed ID: 16843594.
    Abstract:
    Pure TiO(2) and erbium ion-doped TiO(2) (Er(3+)-TiO(2)) catalysts prepared by the sol-gel method were characterized by means of XRD and diffusive reflectance spectra (DRS). The XRD results showed that erbium ion doping could enhance the thermal stability of TiO(2) and inhibit the increase of the crystallite size, and the DRS results showed that the optical absorption edge slightly shifted to red direction owing to erbium ion doping and the Er(3+)-TiO(2) catalysts had three typical absorption peaks located at 490, 523 and 654 nm owing to the transition of 4f electron from (4)I(15/2) to (4)F(7/2), (2)H(11/2) and (4)F(9/2). With a purpose of azo dyes degradation, orange I was used as a model chemical. And the adsorption isotherm, degradation and mineralization of orange I were investigated in aqueous suspension of pure TiO(2) or Er(3+)-TiO(2) catalysts. The results showed that Er(3+)-TiO(2) catalysts had higher adsorption equilibrium constants and better adsorption capacity than pure TiO(2). The adsorption equilibrium constants (K(a)) of Er(3+)-TiO(2) catalysts were about twice of that of pure TiO(2). The maximum adsorption capacity (Q(max)) of 2.0% Er(3+)-TiO(2) catalyst was 13.08x10(-5)mol/g, which was much higher than that of pure TiO(2) with 9.03x10(-5)mol/g. Among Er(3+)-TiO(2) catalysts, 2.0% Er(3+)-TiO(2) catalyst achieved the highest Q(max) and K(a) values. The kinetics of the orange I degradation using different Er(3+)-TiO(2) catalysts were also studied. The results demonstrated that the degradation and mineralization of orange I under both UV radiation and visible light were more efficient with Er(3+)-TiO(2) catalyst than with pure TiO(2), and an optimal dosage of erbium ion at 1.5% achieved the highest degradation rate. The higher photoactivity under visible light might be attributable to the transitions of 4f electrons of Er(3+) and red shifts of the optical absorption edge of TiO(2) by erbium ion doping.
    [Abstract] [Full Text] [Related] [New Search]