These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cation mediation of radical transfer between Trp48 and Tyr356 during O2 activation by protein R2 of Escherichia coli ribonucleotide reductase: relevance to R1-R2 radical transfer in nucleotide reduction?
    Author: Saleh L, Bollinger JM.
    Journal: Biochemistry; 2006 Jul 25; 45(29):8823-30. PubMed ID: 16846225.
    Abstract:
    A tryptophan 48 cation radical (W48(+)(*)) forms concomitantly with the Fe(2)(III/IV) cluster, X, during activation of oxygen for tyrosyl radical (Y122.) production in the R2 subunit of class I ribonucleotide reductase (RNR) from Escherichia coli. W48(+)(*) is also likely to be an intermediate in the long-range radical transfer between R2 and its partner subunit, R1, during nucleotide reduction by the RNR holoenzyme. The kinetics of decay of W48(+)(*) and formation of tyrosyl radicals during O(2) activation (in the absence of R1) in wild-type (wt) R2 and in variants with either Y122, Y356 (the residue thought to propagate the radical from W48(+)(*) into R1 during turnover), or both replaced by phenylalanine (F) have revealed that the presence of divalent cations at concentrations similar to the [Mg(2+)] employed in the standard RNR assay (15 mM) mediates a rapid radical-transfer equilibrium between W48 and Y356. Cation-mediated propagation of the radical from W48 to Y356 gives rise to a fast phase of Y. production that is essentially coincident with W48(+)(*) formation and creates an efficient pathway for decay of W48(+)(*). Possible mechanisms of this cation mediation and its potential relevance to intersubunit radical transfer during nucleotide reduction are considered.
    [Abstract] [Full Text] [Related] [New Search]