These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Distribution of glycosyltransferases among Golgi apparatus subfractions from liver and hepatomas of the rat.
    Author: Hartel-Schenk S, Minnifield N, Reutter W, Hanski C, Bauer C, Morré DJ.
    Journal: Biochim Biophys Acta; 1991 Dec 06; 1115(2):108-22. PubMed ID: 1684914.
    Abstract:
    Glycosyltransferase activities of highly purified fractions of Golgi apparatus, plasma membrane and endoplasmic reticulum, all from the same homogenates, were analyzed and compared. Additionally, Golgi apparatus were unstacked and the individual cisternae separated into fractions enriched in cis, median and trans elements using the technique of preparative free-flow electrophoresis. Golgi apparatus from both liver and hepatomas were enriched in all glycosyltransferases compared to endoplasmic reticulum and plasma membranes. However, Golgi apparatus from hepatomas showed both elevated fucosyltransferase and galactosyltransferase activities but reduced sialyltransferase and dipeptidyl peptidase IV (DPP IV) activities compared to liver. Activity of N-acetylglucosaminyltransferase was approximately the same in both liver and hepatoma Golgi apparatus. With normal liver, sialyl- and galactosyltransferase activities and DPP IV showed a marked cis-to-trans gradient of activity. Fucosyltransferase was concentrated in two regions of the electrophoretic separations, one corresponding to cis cisternae and one corresponding to trans cisternae. N-Acetylglucosaminyltransferase activity was more widely distributed but the endogenous acceptor activity was predominantly cis. With hepatoma Golgi apparatus, the pattern for DPP IV was similar to that for liver but those of sialyl- and galactosyltransferases differed markedly from liver. Instead of activity increasing cis to trans, the activities for sialyl- and galactosyltransferases decreased. For fucosyltransferases, activity dependent on exogenous acceptor was medial whereas with endogenous acceptor, two activity peaks, cis and trans, still were observed. For N-acetylglucosaminyltransferase the pattern for hepatoma was similar to that for liver. The results indicate alterations in the distribution of glycosyltransferase activities within the Golgi apparatus in hepatotumorigenesis that may reflect altered cell surface glycosylation patterns.
    [Abstract] [Full Text] [Related] [New Search]