These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cardioprotection from ischemia-reperfusion injury due to Ras-GTPase inhibition is attenuated by glibenclamide in the globally ischemic heart.
    Author: Al-Rashdan I, Canatan H, Al-Maghrebi M, Yousif MH, Khan SA, Benter IF.
    Journal: Cell Biochem Funct; 2007; 25(4):455-61. PubMed ID: 16850529.
    Abstract:
    The present study was designed to see if acute local inhibition of Ras-GTPase before or after ischemia (during perfusion) would produce protection against ischemia and reperfusion (I/R)-induced cardiac dysfunction. The effect of glibenclamide, an inhibitor of cardiac mitochondrial ATP-sensitive potassium (mitoK(ATP)) channels, on Ras-GTPase-mediated cardioprotection was also studied. A 40 min episode of global ischemia followed by a 30 min reperfusion in perfused rat hearts produced significantly impaired cardiac function, measured as left ventricular developed pressure (P(max)) and left ventricular end-diastolic pressure (LVEDP). Perfusion with Ras-GTPase inhibitor FPT III before I/R [FPT(pre)], significantly enhanced cardiac recovery in terms of left ventricular contractility. P(max) was significantly higher at the end of 30 min reperfusion in FPT(pre)-treated hearts compared to pre-conditioned hearts. However, the degree of improvement in left ventricular contractility was significantly less when FPT III was given only after ischemia during reperfusion [FPT(post)]. Combination treatment with FPT III and glibenclamide before I/R resulted in significant reduction of FPT III-mediated cardioprotection. These data suggest that activation of Ras-GTPase signaling pathways during ischemia are critical in the development of left ventricular dysfunction and that opening of mitoK(ATP) channels, at least in part, contributes to cardioprotection produced by Ras-GTPase inhibition.
    [Abstract] [Full Text] [Related] [New Search]