These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Anisotropic interfacial free energies of the hard-sphere crystal-melt interfaces. Author: Mu Y, Houk A, Song X. Journal: J Phys Chem B; 2005 Apr 14; 109(14):6500-4. PubMed ID: 16851729. Abstract: We present a reliable method to define the interfacial particles for determining the crystal-melt interface position, which is the key step for the crystal-melt interfacial free energy calculations using capillary wave approach. Using this method, we have calculated the free energies gamma of the fcc crystal-melt interfaces for the hard-sphere system as a function of crystal orientations by examining the height fluctuations of the interface using Monte Carlo simulations. We find that the average interfacial free energy gamma(0) = 0.62 +/- 0.02k(B)T/sigma(2) and the anisotropy of the interfacial free energies are weak, gamma(100) = 0.64 +/- 0.02, gamma(110) = 0.62 +/- 0.02, gamma(111) = 0.61 +/- 0.02k(B)T/sigma(2). The results are in good agreement with previous simulation results based on the calculations of the reversible work required to create the interfaces (Davidchack and Laird, Phys. Rev. Lett. 2000, 85, 4571). In addition, our results indicate gamma(100) > gamma(110) > gamma(111) for the hard-sphere system, similar to the results of the Lennard-Jones system.[Abstract] [Full Text] [Related] [New Search]