These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Photocatalytic H2 evolution under visible-light irradiation over band-structure-controlled (CuIn)xZn2(1-x)S2 solid solutions.
    Author: Tsuji I, Kato H, Kobayashi H, Kudo A.
    Journal: J Phys Chem B; 2005 Apr 21; 109(15):7323-9. PubMed ID: 16851838.
    Abstract:
    (CuIn)(x)Zn2(1-x)S2 solid solutions between a ZnS photocatalyst with a wide band gap and CuInS(2) with a narrow band gap showed photocatalytic activities for H(2) evolution from aqueous solutions containing sacrificial reagents SO(3)(2-) and S(2-) under visible-light irradiation (lambda >/= 420 nm). Pt (0.5 wt %)-loaded (CuIn)(0.09)Zn(1.82)S(2) with a 2.3-eV band gap showed the highest activity for H(2) evolution, and the apparent quantum yield at 420 nm amounted to 12.5%. H(2) evolved at a rate of 1.5 L h(-1) m(-2) under irradiation with a solar simulator (AM 1.5). Diffuse reflection and photoluminescence spectra of the solid solutions shifted monotonically to a long wavelength side, as the ratio of CuInS(2) to ZnS increased in the solid solutions. The photocatalytic H(2) evolution depended on the composition as well as the photophysical properties. DFT calculations suggested that the visible-light response should be derived from the contribution of Cu 3d and S 3p orbitals to the valence band and that of In 5s5p and Zn 4s4p orbitals to the conduction band, respectively. The contribution of these orbitals to the energy bands affected the photophysical and photocatalytic properties.
    [Abstract] [Full Text] [Related] [New Search]