These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Calculating reversible potentials for Pt-H and Pt-OH bond formation in basic solutions.
    Author: Cai Y, Anderson AB.
    Journal: J Phys Chem B; 2005 Apr 21; 109(15):7557-63. PubMed ID: 16851868.
    Abstract:
    Two redox reactions on platinum electrodes in base, the formation of underpotential deposited hydrogen, forming a Pt-H bond, and the electro-oxidation of water, forming a Pt-OH bond, were studied by two methods. The first applies a linear relationship between reaction energy in solution and standard reversible potential, an approach recently used in this lab to predict the formation potential of the surface-bonded species. This method depends on the availability of accurate surface adsorption bond strengths from measurement or theory and can be applied in two formats, the empirical model and the linear correlation model. The second method treats the reaction within the so-called double-layer model where reactants and products on the surface are well defined and are experiencing the influence of the electrolyte. When this approach is used, two coordination shells of hydrogen bonded water molecules are found necessary to sufficiently stabilize the hydroxide ion in this model, unlike acid for which past work showed only one shell around the hydronium ion is needed. The calculated reversible potentials for both reactions by the empirical and linear correlation models are in good agreement with the experimental onset potentials observed in cyclic voltammetry measurements for Pt(111) surface electrodes when empirical or accurately calculated H, OH, and H(2)O adsorption energies are used. The double layer models for these reactions also yield satisfactory results, and it is concluded that the models should be useful for studying electron-transfer reactions in base, as has already been done for forming Pt-H and Pt-OH in acid solution.
    [Abstract] [Full Text] [Related] [New Search]