These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Catalytic oxidation of ammonia on RuO2(110) surfaces: mechanism and selectivity.
    Author: Wang Y, Jacobi K, Schöne WD, Ertl G.
    Journal: J Phys Chem B; 2005 Apr 28; 109(16):7883-93. PubMed ID: 16851919.
    Abstract:
    The selective oxidation of ammonia to either N2 or NO on RuO2(110) single-crystal surfaces was investigated by a combination of vibrational spectroscopy (HREELS), thermal desorption spectroscopy (TDS) and steady-state rate measurements under continuous flow conditions. The stoichiometric RuO2(110) surface exposes coordinatively unsaturated (cus) Ru atoms onto which adsorption of NH3 (NH3-cus) or dissociative adsorption of oxygen (O-cus) may occur. In the absence of O-cus, ammonia desorbs completely thermally without any reaction. However, interaction between NH3-cus and O-cus starts already at 90 K by hydrogen abstraction and hydrogenation to OH-cus, leading eventually to N-cus and H2O. The N-cus species recombine either with each other to N2 or with neighboring O-cus leading to strongly held NO-cus which desorbs around 500 K. The latter reaction is favored by higher concentrations of O-cus. Under steady-state flow condition with constant NH3 partial pressure and varying O2 pressure, the rate for N2 formation takes off first, passes through a maximum and then decreases again, whereas that for NO production exhibits an S-shape and rises continuously. In this way at 530 K almost 100% selectivity for NO formation (with fairly high reaction probability for NH3) is reached.
    [Abstract] [Full Text] [Related] [New Search]