These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Properties of spanning water networks at protein surfaces.
    Author: Smolin N, Oleinikova A, Brovchenko I, Geiger A, Winter R.
    Journal: J Phys Chem B; 2005 Jun 02; 109(21):10995-1005. PubMed ID: 16852340.
    Abstract:
    The formation of a spanning two-dimensional hydrogen-bonded water network at the surface of proteins via a percolation transition enables their biological function. We show in detail how the spanning (percolating) water network appears at the surfaces of model hydrophilic spheres and at the surface of a single protein (lysozyme) molecule. We have found essential correlations of the linear extension, radius of gyration, and position of the center of mass of the largest water cluster with its size. The specific two-peak structure of the probability distribution of the largest cluster size allowed us to study various properties separately for spanning and nonspanning largest clusters. The radius of gyration of the spanning cluster always exceeds the radii of the spheres or the effective radius of the protein. Any spanning cluster envelops essentially more than half of the surface area. The temporal decay of the spanning networks shows a stretched exponential character. Their average lifetime at the percolation threshold is about the lifetime of a water-water hydrogen bond.
    [Abstract] [Full Text] [Related] [New Search]