These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Adsorption and reaction of SO2 with a polycrystalline UO2 film: promotion of S-O bond cleavage by creation of O-defects and Na or Ca coadsorption.
    Author: Schlereth TW, Hedhili MN, Yakshinskiy BV, Gouder T, Madey TE.
    Journal: J Phys Chem B; 2005 Nov 10; 109(44):20895-905. PubMed ID: 16853709.
    Abstract:
    To characterize UO(2) for its possible use in desulfurization applications, the interactions of molecular sulfur dioxide (SO(2)) with a polycrystalline uranium dioxide film have been studied by means of X-ray photoelectron spectroscopy (XPS), temperature-programmed desorption (TPD), and low-energy ion scattering (LEIS). The stoichiometric, oxygen-deficient, calcium-precovered and sodium-precovered UO(2) surfaces have been characterized. The changes in oxide reactivity upon creation of oxygen vacancies and coadsorption of sodium and calcium have been studied. After creation of a reduced UO(2-x) surface (x approximately 0.44) via Ar(+) sputtering, the U 4f XPS spectrum shows conspicuous differences that are good indicators of the surface stoichiometry. Molecular SO(x) formation (x = 2-4) is observed after SO(2) deposition onto stoichiometric UO(2) and onto UO(2) precovered with small amounts (<1 ML) of Na or Ca; complete dissociation of SO(2) is not observed. Heating leads to desorption of the SO(x) species and to transformation of SO(2) to SO(3) and SO(3) to SO(4). On oxygen-deficient UO(2) and on UO(2) precovered with large Na or Ca coverages (> or =4 ML), both the formation of SO(x)= species and complete dissociation of SO(2) are observed. A higher thermal stability of the sulfur components is observed on these surfaces. In all cases for which dissociation occurs, the XPS peak of atomic sulfur shows similar structure: three different binding states are observed. The reactivity of oxygen-deficient UO(2) and sodium- and calcium-precovered UO(2) (coverages > or = 4 ML) is attributed to charge transfer into the antibonding LUMO of the adsorbed molecule.
    [Abstract] [Full Text] [Related] [New Search]