These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Probing surface properties and glass-liquid transition of amorphous solid water: temperature-programmed TOF-SIMS and TPD studies of adsorption/desorption of hexane.
    Author: Souda R.
    Journal: J Phys Chem B; 2005 Nov 24; 109(46):21879-83. PubMed ID: 16853842.
    Abstract:
    The interaction of hexane with amorphous solid water has been investigated in terms of the surface diffusion, hydrogen bond imperfections, hydrophobic hydration, crystallization, and glass-liquid transition. The hexane exhibits two main peaks in temperature-programmed desorption: one is ascribed to a complex formed at the surface or subsurface sites (135 K) and the other is caused by a bulk complex (165 K). The latter is associated with the presence of frozen-in imperfections in hydrogen bonds and formed provided that the annealing temperature of the film is below 130 K, whereas the former is created even when the film is annealed up to 150 K. Thus, the hexane-water interaction is hardly characterized by simple physisorption. The hexane is incorporated in the bulk during reorganization of hydrogen bonds due to rotational and translational diffusions of water molecules above 120-140 K, whereas the surface complex is formed even below 120 K due to the surface diffusion of molecules. The film undergoes abrupt dewetting at 165 K as a consequence of the glass-liquid transition. The slow evolution of the fluidity in the supercooled liquid phase may be responsible for the delay of the structural relaxation (165 K) relative to the onset of the translational molecular diffusion (135-140 K).
    [Abstract] [Full Text] [Related] [New Search]