These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cationic nonsymmetric transplatinum complexes with piperidinopiperidine ligands. Preparation, characterization, in vitro cytotoxicity, in vivo toxicity, and anticancer efficacy studies.
    Author: Najajreh Y, Khazanov E, Jawbry S, Ardeli-Tzaraf Y, Perez JM, Kasparkova J, Brabec V, Barenholz Y, Gibson D.
    Journal: J Med Chem; 2006 Jul 27; 49(15):4665-73. PubMed ID: 16854072.
    Abstract:
    A series of complexes of the general formula trans-[PtCl2(Am)(pip-pip)] x HCl where pip-pip is 4-piperidinopiperidine and Am is NH3, methylamine (MA), dimethylamine (DMA), n-propylamine (NPA), isopropylamine (IPA), n-butylamine (NBA), or cyclohexylamine (CHA) were prepared and characterized, and their cytotoxic properties against ovarian and colon cancer cells were evaluated. The trans-[PtCl2(NH3)(pip-pip)] x HCl was significantly more potent than cisplatin in all the cisplatin-resistant ovarian cancer cell lines and was nearly as cytotoxic as cisplatin against colon cancer cells. In vivo studies in mice showed that the pip-pip complexes are significantly less toxic than cisplatin. Cisplatin was more efficacious than both trans-[PtCl2(NH3)(pip-pip)] x HCl and trans-[PtCl2(NBA)(pip-pip)] x HCl in the A2780 and A2780cisR tumor xenograft models, consistent with its lower IC50 values in A2780 cells but contrary to the higher IC50 values in A2780cisR cells. In the colon cancer cell studies, trans-[PtCl2(NH3)(pip-pip)] x HCl was slightly less potent than cisplatin in the in vitro studies but had efficacy comparable to that of cisplatin in the in vivo xenograft model.
    [Abstract] [Full Text] [Related] [New Search]