These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Effect of ubiquinone on contractile function and antioxidant status of the myocardium in spontaneously hypertensive rats]. Author: Lakomkin VL, Konovalova GG, Kalenikova EI, Zabbarova IV, Tsyplenkova VG, Tikhaze AK, Lankin VZ, Ruuge EK, Kapel'ko VI. Journal: Kardiologiia; 2006; 46(5):54-62. PubMed ID: 16858356. Abstract: During the period of aging of spontaneously hypertensive rats (SHR) between 6 and 13 weeks the systolic arterial pressure increased from 131+/-2 up to 176+/-3 mm Hg while in the control group of WKY rats it reached 122+/-2 mmHg. The hypertension was combined with myocardial hypertrophy -- the relative weight of SHR heart was 24% higher. The contractile myocardial function of the isolated isovolumic heart of SHR group did not differ from WKY group in a wide range of coronary perfusion rates. During oxidative stress induced by 40-min intracoronary introduction of H(2)O(2) function of hypertrophied SHR hearts fell significantly deeper. This coincided with decreased myocardial activity of superoxide dismutase and glutathione peroxidase by 29-30%, and increased catalase activity by 18%. The rate of generation of active forms of oxygen (hydroxyl radicals HO(.-)) in mitochondria from SHR hearts was higher as compared with WKY. Thus, the development of hypertension was combined with decreased antioxidant protection of the myocardium. The addition of ubiquinone to drinking water (approximately 10 mg/kg/day) for 6 weeks did not affect arterial pressure level, but was associated with two times lesser degree of myocardial hypertrophy. The hearts of SHR that received ubiquinone differed from those not treated with ubiquinone by increased maximal level of myocardial contractile function, and by improved myocardial relaxability and distensibility. After administration of H(2)O(2), myocardial function of SHR was kept on higher level. That was combined with less myocardial oedema, better preservation of antioxidant enzymes and reduced rate of succinate-dependent generation of superoxide radicals in mitochondria from hearts of ubiquinone treated SHR. The results have shown, that administration of ubiquinone to rats with hereditary hypertension reduces degree of myocardial hypertrophy, improves functional properties of the myocardium, promotes effective protection of antioxidant enzymes and increases the resistance of the cardiac muscle to oxidative stress.[Abstract] [Full Text] [Related] [New Search]