These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Assessment of regional blood flow in cerebral motor and sensory areas in patients with spinal cord injury.
    Author: Cermik TF, Tuna H, Kaya M, Tuna F, Gültekin A, Yiğitbaşi ON, Alavi A.
    Journal: Brain Res; 2006 Sep 13; 1109(1):54-9. PubMed ID: 16859656.
    Abstract:
    We assessed the presence and the degree of alteration of the regional blood flow (rCBF) as visualized by Tc-99m HMPAO brain rest SPECT in the sensory motor cortex and subcortical structure in spinal cord injury (SCI) patients, who suffered from various levels of motor and sensory function loss. Twenty-two patients (mean age: 42.1+/-13.4 years, 18 M, 4 F) and 11 control subjects (mean age: 32.2+/-6.4 years, 8 M, 3 F) participated in this study. The spinal cord injury group was consisted of 2 groups (14 paraplegic and 8 tetraplegic patients). The corticocortical rCBF ratios were calculated by using region of interests obtained from 34 cortical areas on coronal slices. Significantly reduced rCBF were measured from 11 cortical areas in tetraplegic patients and 11 cortical areas in paraplegic patients. Some of these areas were different in each group. In the tetraplegic group, significant reduction was observed in the following rCBF areas: left anterior cingulate gyrus, left medial supplementary motor area, bilateral front and back aspects of posterior cingulate gyrus, right lateral primary motor area, right medial primary sensory area, bilateral putamen, and right cerebellum. In the paraplegic group, reduced rCBF areas were as follows: bilateral anterior cingulate gyrus, right lateral supplementary motor area, left front aspect of posterior cingulate gyrus, left lateral primary motor area, bilateral back aspects of posterior cingulate gyrus, right medial primary sensory area, left lateral primary sensory area and bilateral putamen. In conclusion, in some of the movement-cortical and subcortical areas having significantly reduced blood flow in SCI may be helpful to demonstrate the disrupted areas of rCBF by SPECT. We believe that it may be useful if these findings should be considered during the evaluations related to the reorganization in SCI cases.
    [Abstract] [Full Text] [Related] [New Search]