These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification of phenacetin metabolites in human urine after administration of phenacetin-C2H3: measurement of futile metabolic deacetylation via HPLC/MS-SPE-NMR and HPLC-ToF MS. Author: Nicholls AW, Wilson ID, Godejohann M, Nicholson JK, Shockcor JP. Journal: Xenobiotica; 2006 Jul; 36(7):615-29. PubMed ID: 16864507. Abstract: The metabolism of acetyl-labelled phenacetin-C2H3 was investigated in man following a single (150 mg) oral dose. Urine samples were collected at predose, 0-2 h and >2-4 h post-dose, and samples from each time-point were then analysed directly using 1H-nuclear magnetic resonance (NMR) spectroscopy. The phenacetin metabolites acetaminophen (paracetamol) glucuronide, sulphate and the N-acetyl-L-cysteinyl conjugate were identified by this method, and all showed clear evidence of the loss of the original 2H3-acetyl label and its replacement with 1H3 (futile deacetylation). The observed percentage futile deacetylation by 1H-NMR spectroscopy was measured as approximately 20% in each metabolite (about 2% of the recovered dose). After sample preparation by solid-phase extraction on a C18 solid-phase extraction (SPE) cartridge, further profiling was performed using high-performance liquid chromatography/mass spectrometry-solid-phase extraction-nuclear magnetic resonance (HPLC/MS-SPE-NMR) confirming futile deacetylation had taken place as indicated by NMR spectroscopy on both the isolated acetaminophen glucuronide and L-cysteinyl-metabolites. Additional analysis by high-performance liquid chromatography-time-of-flight mass spectrometry (HPLC-ToF MS) identified further phenacetin metabolites, and from these data the mean percentage of futile deacetylation was measured as 31% +/- 2% for the acetylated phenacetin metabolites. A number of non-acetylated metabolites were also detected in the sample via HPLC-ToF MS. The results showed that phenacetin underwent a transient formation via a number of toxic intermediates to a much greater extent than had been observed in similar studies on acetaminophen. These results may contribute to the understanding of the analgesic nephropathy reported following chronic phenacetin consumption.[Abstract] [Full Text] [Related] [New Search]