These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Tailoring transition metal complexes for nonlinear optics applications. 2. A theoretical investigation of the second-order nonlinear optical properties of M(CO)(5)L complexes (M = Cr, W; L = Py, PyCHO, Pyz, PyzBF(3), BPE, BPEBF(3)). Author: Bruschi M, Fantucci P, Pizzotti M. Journal: J Phys Chem A; 2005 Oct 27; 109(42):9637-45. PubMed ID: 16866417. Abstract: In this work, we report an ab initio investigation of second-order nonlinear optical (NLO) properties and absorption electronic spectra of push-pull transition metal chromophores of the formula [M(CO)(5)L] (M = Cr, W; L = pyridine (Py), 4-formyl-pyridine (PyCHO), pyrazine (Pyz), trans-1,2-bis(4-pyridyl)ethylene (BPE)). Pyz and BPE are considered either with one nitrogen atom free or interacting with the strong acceptor BF(3). All of the molecular properties have been calculated using two different and methodologically independent approaches: the time dependent and coupled perturbed density functional theories (TDDFT and CPDFT) and the sum-over-states (SOS) approach, where the excited states are obtained via the single configuration interaction (SCI) ab initio method. DFT results are in acceptable agreement with the experimental energy values of electronic transitions (with the exception of chromophores with the large pi-delocalization, like BPE); SCI calculations overestimate excitation energies and produce an inversion in the order of d(M) --> pi(L) and d(M) --> pi(CO) transitions. The SCI-SOS approach gives first-order hyperpolarizabilities, basically in agreement as trend and values with the experiments and seems to be a tool generally suitable for the evaluation of these properties also for transition metal complexes. On the other hand, the first-order hyperpolarizabilities computed using the CPDFT approach are consistently overestimated in comparison with the experimental results, especially in the case of a ligand with large pi-delocalization. We also show that the "two-level" approximation taking into account only the lowest energy charge transfer excitation (e.g., d(M) --> pi(L)) is not applicable to chromophores with the extended pi-delocalized ligand (BPE) coordinated to a transition metal, due to significant contributions originating from intraligand pi(L) --> pi(L) transitions. This study reports a detailed analysis and comparison of electronic NLO effects of transition metal complexes computed with DFT and ab initio SCI-SOS methodology.[Abstract] [Full Text] [Related] [New Search]