These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Spectroscopic and computational studies of aqueous ethylene glycol solution surfaces. Author: Hommel EL, Merle JK, Ma G, Hadad CM, Allen HC. Journal: J Phys Chem B; 2005 Jan 20; 109(2):811-8. PubMed ID: 16866446. Abstract: The combination of Monte Carlo, ab initio, and DFT computational studies of ethylene glycol (EG) and EG-water hydrogen-bonding complexes indicate that experimental vibrational spectra of EG and EG-water solution surfaces have contributions from numerous conformations of both EG and EG-water. The computed spectra, derived from harmonic vibrational frequency calculations and a theoretical Boltzmann distribution, show similarity to the experimental surface vibrational spectra of EG taken by broad-bandwidth sum frequency generation (SFG) spectroscopy. This similarity suggests that, at the EG and aqueous EG surfaces, there are numerous coexisting conformations of stable EG and EG-water complexes. A blue shift of the CH2 symmetric stretch peak in the SFG spectra was observed with an increase in the water concentration. This change indicates that EG behaves as a hydrogen-bond acceptor when solvated by additional water molecules. This also suggests that, in aqueous solutions of EG, EG-EG aggregates are unlikely to exist. The experimental blue shift is consistent with the results from the computational studies.[Abstract] [Full Text] [Related] [New Search]