These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Caffeine metabolites are inhibitors of the nuclear enzyme poly(ADP-ribose)polymerase-1 at physiological concentrations.
    Author: Geraets L, Moonen HJ, Wouters EF, Bast A, Hageman GJ.
    Journal: Biochem Pharmacol; 2006 Sep 28; 72(7):902-10. PubMed ID: 16870158.
    Abstract:
    The activity of the nuclear enzyme poly(ADP-ribose)polymerase-1 (E.C.2.4.2.30), which is highly activated by DNA strand breaks, is associated with the pathophysiology of both acute as well as chronic inflammatory diseases. PARP-1 overactivation and the subsequent extensive turnover of its substrate NAD+ put a large demand on mitochondrial ATP-production. Furthermore, due to its reported role in NF-kappaB and AP-1 mediated production of pro-inflammatory cytokines, PARP-1 is considered an interesting target in the treatment of these diseases. In this study the PARP-1 inhibiting capacity of caffeine and several metabolites as well as other (methyl)xanthines was tested using an ELISA-assay with purified human PARP-1. Caffeine itself showed only weak PARP-1 inhibiting activity, whereas the caffeine metabolites 1,7-dimethylxanthine, 3-methylxanthine and 1-methylxanthine, as well as theobromine and theophylline showed significant PARP-1 inhibiting activity. Further evaluation of these compounds in H2O2-treated A549 lung epithelial and RF24 vascular endothelial cells revealed that the decrease in NAD+-levels as well as the formation of the poly(ADP-ribose)polymer was significantly prevented by the major caffeine metabolite 1,7-dimethylxanthine. Furthermore, H2O2-induced necrosis could be prevented by a high dose of 1,7-dimethylxanthine. Finally, antioxidant effects of the methylxanthines could be ruled out with ESR and measurement of the TEAC. Concluding, caffeine metabolites are inhibitors of PARP-1 and the major caffeine metabolite 1,7-dimethylxanthine has significant PARP-1 inhibiting activity in cultured epithelial and endothelial cells at physiological concentrations. This inhibition could have important implications for nutritional treatment of acute and chronic inflammatory pathologies, like prevention of ischemia-reperfusion injury or vascular complications in diabetes.
    [Abstract] [Full Text] [Related] [New Search]