These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Distinct regulation of metabotropic glutamate receptor (mGluR1 alpha) in the developing limbic system following multiple early-life seizures.
    Author: Avallone J, Gashi E, Magrys B, Friedman LK.
    Journal: Exp Neurol; 2006 Nov; 202(1):100-11. PubMed ID: 16870174.
    Abstract:
    The effects of repeated neonatal seizures on metabotropic glutamate receptors (mGluRs) during critical periods of brain development are unknown. Therefore, we characterized the expression of Group I (mGluR1 and mGluR5) and Group II (mGluR2/3) metabotropic glutamate receptor proteins in the developing limbic system in response to a varied neonatal seizure history. Status epilepticus was induced with kainic acid (KA) either once (1x KA) on postnatal (P) day (P13), twice (2x KA) on P6 and P9 or P13, or three times (3x KA) on P6, P9, and P13. In control hippocampus, mGluR1alpha protein expression differed at all stages of development examined, whereas mGluR2/3 and mGluR5 protein expression patterns were mature by P15. After KA-induced status epilepticus, there was a significant elevation in mGluR1alpha protein expression within a select group of inhibitory interneurons of the CA1 stratum oriens-alveus that was enhanced with increasing number of neonatal seizures. mGluR2/3 and mGluR5 subtypes were unchanged. Increases were also observed within neurons of the amygdala and piriform cortex. Selective increases of mGluR1alpha subtypes within limbic structures may contribute to the resistance and tolerance of the immature hippocampus from damage. This may occur by excessive stimulation of excitatory synapses to collectively enhance the inhibitory drive of the immature brain by increasing GABA release. Data suggest that the mGluR1alpha subtype plays an important role in regulating hippocampal network activity after early-life seizures.
    [Abstract] [Full Text] [Related] [New Search]