These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Electrodeposition of polypyrrole-multiwalled carbon nanotube-glucose oxidase nanobiocomposite film for the detection of glucose. Author: Tsai YC, Li SC, Liao SW. Journal: Biosens Bioelectron; 2006 Oct 15; 22(4):495-500. PubMed ID: 16870421. Abstract: A nanobiocomposite film consisted of polypyrrole (PPy), functionalized multiwalled carbon nanotubes (cMWNTs), and glucose oxidase (GOx) were electrochemically synthesized by electrooxidation of 0.1M pyrrole in aqueous solution containing appropriate amounts of cMWNTs and GOx. Potentiostatic growth profiles indicate that the anionic cMWNTs is incorporated within the growing PPy-cMWNTs nanocomposite for maintaining its electrical neutrality. The morphology of the PPy-cMWNTs nanocomposite was characterized by scanning electron microscopy (SEM). The PPy-cMWNTs nanocomposite was deposited homogeneously onto glassy carbon electrode. The amperometric responses vary proportionately to the concentration of hydrogen peroxide at the PPy-cMWNTs nanocomposite modified electrode at an operating potential of 0.7V versus Ag/AgCl (3M). The results indicate that the electroanalytical PPy-cMWNTs-GOx nanobiocomposite film was highly sensitive and suitable for glucose biosensor based on GOx function. The GOx concentration within the PPy-cMWNTs-GOx nanobiocomposite and the film thickness are crucial for the performance of the glucose biosensor. The amperometric responses of the optimized PPy-cMWNTs-GOx glucose biosensor (1.5 mgmL(-1) GOx, 141 mCcm(-2) total charge) displayed a sensitivity of 95 nAmM(-1), a linear range up to 4mM, and a response time of about 8s.[Abstract] [Full Text] [Related] [New Search]