These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Anomalous association and fluorophore influence on the position of dimethylaniline in micelles: fluorescence quenching of 1,8-acridinedione.
    Author: Shanmugapriya T, Selvaraju C, Ramamurthy P.
    Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2007 Mar; 66(3):761-7. PubMed ID: 16872879.
    Abstract:
    Fluorescence quenching of 9,10-dimethyl-3, 4,6,7,9,10-hexahydro-1,8(2H,5H) acridinedione (ADD) dye by N,N-dimethylaniline (DMA) in SDS and CTAB were studied by steady state fluorescence and time resolved techniques. The Stern-Volmer plots for the quenching of ADD by DMA is found to be linear and the Stern-Volmer constant K(SV) depends on the micellar concentration. The fluorescence quenching analysis reveals the binding of DMA with the micelles. The perturbation of the probe on the position of DMA molecule in micelle is inferred in the present investigation. The ADD fluorophore drives the DMA molecule into the non-polar region (core) of the micelle whereas other fluorophores like pyrene and rhodamine6G do not affect the position of DMA. In this report, the importance of the nature of fluorophores in determining the position and association of the quencher molecules in the aggregated systems is being discussed.
    [Abstract] [Full Text] [Related] [New Search]