These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of recombinant human IGF-I/IGF-binding protein-3 complex on glucose and glycerol metabolism in type 1 diabetes. Author: Saukkonen T, Shojaee-Moradie F, Williams RM, Amin R, Yuen KC, Watts A, Acerini CL, Umpleby AM, Dunger DB. Journal: Diabetes; 2006 Aug; 55(8):2365-70. PubMed ID: 16873702. Abstract: Recombinant human IGF-I (rhIGF-I) complexed with its natural binding protein IGF-binding protein (IGFBP)-3 (rhIGF-I/IGFBP-3) is a novel formulation that has been shown to improve insulin sensitivity in type 1 diabetes, yet the mechanisms are not clear. We used stable isotopes to investigate the effects of rhIGF-I/IGFBP-3 on glucose and glycerol metabolism in type 1 diabetes. Fifteen subjects (age 13-24 years; 10 males) were studied on three occasions in random order. Each study period lasted for two days, and an injection of either placebo or rhIGF-I/IGFBP-3 (0.1-0.8 mg x kg(-1) x day (-1)) was given subcutaneously at 6:00 p.m. on days 1 and 2. Following the second injection, the subjects were kept euglycemic overnight by a variable rate insulin infusion, followed by a 4-h, two-step (insulin 0.6 and 1.5 mU x kg(-1) x min (-1)) hyperinsulinemic-euglycemic clamp. During the overnight basal steady state, rhIGF-I/IGFBP-3 dose-dependently reduced endogenous glucose production rate (R(a)) (P = 0.004), while peripheral glucose uptake (R(d)) was not different from placebo. The increase in glucose R(d) during hyperinsulinemic clamp was greater following rhIGF-I/IGFBP-3 than placebo, both during the first (P = 0.008) and second step (P = 0.008) of the clamp. No significant differences were found in glycerol R(a), a measure of lipolysis, between rhIGF-I/IGFBP-3 and placebo. In conclusion, rhIGF-I/IGFBP-3 enhances glucose metabolism by controlling both endogenous glucose output and peripheral glucose uptake.[Abstract] [Full Text] [Related] [New Search]