These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Influence of anthropometric parameters and bone size on bone mineral density using volumetric quantitative computed tomography and dual X-ray absorptiometry at the hip.
    Author: Guglielmi G, van Kuijk C, Li J, Meta MD, Scillitani A, Lang TF.
    Journal: Acta Radiol; 2006 Jul; 47(6):574-80. PubMed ID: 16875335.
    Abstract:
    PURPOSE: To evaluate the influence of anthropometric parameters (age, height, and weight) and bone size on bone mineral density (BMD) using volumetric quantitative computed tomography (QCT) and dual X-ray absorptiometry (DXA) in a group of elderly women. MATERIAL AND METHODS: BMD values were obtained with DXA and QCT at the spine and hip in a cohort of 84 elderly women (mean age 73 +/- 6 years). QCT measures included trabecular, integral, and cortical BMD assessed at the hip and spine as well as cross-sectional areas of the mid-vertebrae and proximal femora. Spinal integral and femoral neck BMD measures were well matched to the regions of bone quantified on anteroposterior (AP) spine DXA and the femoral neck region of hip DXA. RESULTS: When QCT parameters were linearly regressed against body height and weight, only the relationships with weight were found to be statistically significant. Except for cortical BMD at the femoral neck, all BMD and geometric parameters measured from both DXA and QCT showed statistically significant associations with body weight (r2 = 0.4, 0.0001 < P < 0.02). The strongest associations with weight were found for DXA Neck (DXA_NECK) and DXA lumbar spine (DXA_LSP) (r2 = 0.4, P < 0.0001). CONCLUSION: The relationship of DXA BMD is stronger than QCT BMD with body weight and it encompasses the response of both bone size and density to increasing body mass.
    [Abstract] [Full Text] [Related] [New Search]