These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Microarray analysis of differentially expressed genes after exposure of normal human fibroblasts to ionizing radiation from an external source and from DNA-incorporated iodine-125 radionuclide.
    Author: Sokolov MV, Smirnova NA, Camerini-Otero RD, Neumann RD, Panyutin IG.
    Journal: Gene; 2006 Nov 01; 382():47-56. PubMed ID: 16876969.
    Abstract:
    Exposure of cells to ionizing radiation (IR) produces changes in the expression level of a large number of genes. However, less is known of gene-expression changes caused by local radiation exposure from radionuclides within cells. We studied changes in the genome-wide gene expression induced by decay of 125I incorporated into DNA as [125I]-iododeoxyuridine (125I-IUdR) in normal IMR-90 human lung fibroblasts and compared them with the changes produced by external gamma-radiation delivered at high (HDR) or low (LDR) dose rate. We found that more than 2000 genes were consistently up- or down-regulated following HDR and LDR gamma-radiation. The profiles of differentially expressed genes following HDR and LDR shared about 64% (up) and 74% (down) genes in common, with many genes identified as radiation-responsive for the first time. In contrast, in all only 206 genes changed their expression level in the 125I-IUdR-treated cells, even though the total number of DNA double-strand breaks (DSB) produced by 125I-IUdR exceeded that produced by the gamma-radiation. With few exceptions, the expression levels of 125I-IUdR-responsive genes were also altered following gamma-irradiation. Therefore, nuclear DNA-localized decays of 125I produce 10 times fewer differentially expressed genes than whole-cell exposure to gamma-radiation of comparable dose. These results suggest that the effect of IR on the changes in global gene expression depends on the distribution of energy depositions within the cell. In contrast to cell survival, DNA DSB may not be the major factor modulating changes in gene expression following irradiation.
    [Abstract] [Full Text] [Related] [New Search]