These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Biphasic modulation of ryanodine receptors by sulfhydryl oxidation in rat ventricular myocytes. Author: Xie H, Zhu PH. Journal: Biophys J; 2006 Oct 15; 91(8):2882-91. PubMed ID: 16877504. Abstract: To understand better the modulation of ryanodine receptors (RyRs) during oxidative stress, the effect of 4,4'-dithiodipyridine (DTDP), a cell-permeant and thiol-reactive oxidant, on global Ca(2+) signal and spontaneous Ca(2+) sparks of rat ventricular myocytes was investigated. It was shown that a brief Ca(2+) transient was elicited by DTDP, when its concentration was raised to 100 microM DTDP. In addition a dose-dependent increase of cytoplasmic free Zn(2+) concentration was induced by DTDP. An increase of the frequency of spontaneous Ca(2+) sparks appeared at 3 microM DTDP, whereas higher concentration of DTDP caused a biphasic change of the frequency in both intact and permeabilized myocytes. Consistent with the biphasic effect, caffeine-induced Ca(2+) transients were similarly affected. Because DTDP did not reduce the free Ca(2+) concentration in the sarcoplasmic reticulum lumen, it is likely that the effects of DTDP on the frequency and caffeine-induced Ca(2+) transients are due mainly to sulfhydryl oxidation-induced activation and subsequent inactivation of RyRs. Unlike the frequency, the spatio-temporal properties of Ca(2+) sparks were not influenced by DTDP. The finding that DTDP does not affect the duration of Ca(2+) sparks is inconsistent with that the DTDP-induced increase of the open time of reconstituted RyR channels. The mechanism underlying this discrepancy, especially the possible role of the interaction between arrayed RyRs in myocytes, is discussed. This study suggests that, even if oxidative stress is mild enough not to cause intracellular Ca(2+) accumulation, it may affect signaling pathways through directly modulating the RyR or its complex and in turn changing the frequency of spontaneous Ca(2+) sparks. Thus, the functional importance of moderate oxidative stress should not be overlooked.[Abstract] [Full Text] [Related] [New Search]