These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protection against congenital cytomegalovirus (CMV) disease, conferred by a replication-disabled, bacterial artificial chromosome (BAC)-based DNA vaccine.
    Author: Schleiss MR, Stroup G, Pogorzelski K, McGregor A.
    Journal: Vaccine; 2006 Sep 11; 24(37-39):6175-86. PubMed ID: 16879902.
    Abstract:
    It is unclear if protective immunity can be conferred by a cytomegalovirus (CMV) vaccine encoding a single protein subunit, or if multiple viral genes need to be targeted. Using the guinea pig model of congenital CMV infection, these studies examined the immunogenicity and efficacy of a DNA vaccine based on the guinea pig cytomegalovirus (GPCMV) genome cloned as a non-infectious BAC plasmid, modified by transposon insertion into the homolog of the HCMV tegument protein, UL48. Following vaccination of female Hartley guinea pigs with BAC DNA, adverse GPCMV-related pregnancy outcome were assessed after establishment of pregnancy, followed by GPCMV third-trimester challenge. Animals immunized with recombinant BACmid engendered anti-GPCMV antibodies by ELISA assay. Immunogenicity of BAC plasmid DNA was augmented by inclusion of the lipid adjuvant, DOTMA/DOPE, in the vaccine regimen. Among pups born to 12 control (sham-immunized) dams challenged with GPCMV in the third trimester, mortality was 23/35 (66%). In contrast, among evaluable pregnancy outcomes in pups born to 10 BAC-immunized pregnant dams, preconception immunization resulted in reduced pup mortality, to 10/34 pups (29%; p<0.005 versus control, Fisher's exact test). In addition, vaccinated dams had reduced viral load, compared to controls, as assessed by quantitative, real-time PCR.
    [Abstract] [Full Text] [Related] [New Search]