These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Biocatalytic synthesis of a nanostructured and crystalline bimetallic perovskite-like barium oxofluorotitanate at low temperature.
    Author: Brutchey RL, Yoo ES, Morse DE.
    Journal: J Am Chem Soc; 2006 Aug 09; 128(31):10288-94. PubMed ID: 16881660.
    Abstract:
    Silicatein, an enzymatic biocatalyst from the marine sponge Tethya aurantia, is demonstrated to catalyze and template the hydrolysis/condensation of the molecular precursor BaTiF6 at low temperature to form nanocrystalline BaTiOF4, an orthorhombic oxofluorotitanate. The kinetics of hydrolysis and growth were studied in-situ via pH profiling and quartz crystal microbalance (QCM) techniques. The composition and structure of the resulting BaTiOF4 microstructures on the silicatein surface were characterized using FT-IR spectroscopy, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, scanning electron microscopy, transmission electron microscopy, and selected area electron diffraction. The silicatein-mediated hydrolysis/condensation of BaTiF6 generates nanocrystalline BaTiOF4 (a high-temperature intermediate to BaTiO3) at 16 degrees C without any added acid or base, and the growth is templated along the protein filaments into floret microstructures. The unique combination of silicatein and the single-source molecular precursor has allowed a multimetallic perovskite-like material to be biocatalytically synthesized, in vitro, for the first time.
    [Abstract] [Full Text] [Related] [New Search]