These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of Galphaq-dependent PLC-beta1 activity by PKG and PKA is mediated by phosphorylation of RGS4 and GRK2.
    Author: Huang J, Zhou H, Mahavadi S, Sriwai W, Murthy KS.
    Journal: Am J Physiol Cell Physiol; 2007 Jan; 292(1):C200-8. PubMed ID: 16885398.
    Abstract:
    In smooth muscle of the gut, G(q)-coupled receptor agonists activate preferentially PLC-beta1 to stimulate phosphoinositide (PI) hydrolysis and inositol 1,4,5-trisphosphate (IP(3)) generation and induce IP(3)-dependent Ca(2+) release. Inhibition of Ca(2+) mobilization by cAMP- (PKA) and cGMP-dependent (PKG) protein kinases reflects inhibition of PI hydrolysis by both kinases and PKG-specific inhibitory phosphorylation of IP(3) receptor type I. The mechanism of inhibition of PLC-beta1-dependent PI hydrolysis has not been established. Neither G(q) nor PLC-beta1 was directly phosphorylated by PKA or PKG in gastric smooth muscle cells. However, both kinases 1) phosphorylated regulator of G protein signaling 4 (RGS4) and induced its translocation from cytosol to plasma membrane, 2) enhanced ACh-stimulated association of RGS4 and Galpha(q).GTP and intrinsic Galpha(q).GTPase activity, and 3) inhibited ACh-stimulated PI hydrolysis. RGS4 phosphorylation and inhibition of PI hydrolysis were blocked by selective PKA and PKG inhibitors. Expression of RGS4(S52A), which lacks a PKA/PKG phosphorylation site, blocked the increase in GTPase activity and the decrease in PI hydrolysis induced by PKA and PKG. Blockade of PKA-dependent effects was only partial. Selective phosphorylation of G protein-coupled receptor kinase 2 (GRK2), which contains a RGS domain, by PKA augmented ACh-stimulated GRK2:Galpha(q).GTP association; both effects were blocked in cells expressing GRK2(S685A), which lacks a PKA phosphorylation site. Inhibition of PI hydrolysis induced by PKA was partly blocked in cells expressing GRK2(S685A) and completely blocked in cells coexpressing GRK2(S685A) and RGS4(S52A) or Galpha(q)(G188S), a Galpha(q) mutant that binds GRK2 but not RGS4. The results demonstrate that inhibition of PLC-beta1-dependent PI hydrolysis by PKA is mediated via stimulatory phosphorylation of RGS4 and GRK2, leading to rapid inactivation of Galpha(q).GTP. PKG acts only via phosphorylation of RGS4.
    [Abstract] [Full Text] [Related] [New Search]