These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of pressure on molecular and ionic motions in ultraviscous acetaminophen-aspirin mixture. Author: Andersson O, Johari GP, Shanker RM. Journal: J Pharm Sci; 2006 Nov; 95(11):2406-18. PubMed ID: 16886195. Abstract: Effect of pressure and temperature on molecular motions and dc conductivity in ultraviscous, 50 wt% acetaminophen-aspirin melt has been studied by dielectric relaxation spectroscopy. The spectra obtained over the pressure range, 5-300 MPa and temperature range, 295-320 K show a distribution of relaxation times greater than found in pure acetaminophen. The equilibrium dielectric permittivity and relaxation time, tau, of the melt increase with increase in pressure and decrease in temperature and the dc conductivity, sigma(dc), decreases. The pressure and temperature variation of the limiting high frequency permittivity shows significant contribution from infrared polarization. The volumes of activation for sigma(dc) and tau vary with both the pressure and temperature, indicating that there is also a structural effect that determine sigma(dc). This effect would add a non-linear term to the Debye-Stokes-Einstein equation for variation of sigma(dc) with tau. The ultraviscous liquid remains stable with time, and with change in temperature and pressure, suggesting that a more stable glassy state of a pharmaceutical may be obtained by mixing a second component.[Abstract] [Full Text] [Related] [New Search]