These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The use of a sequential leaching procedure for assessing the heavy metal leachability in lime waste from the lime kiln at a caustizicing process of a pulp mill.
    Author: Pöykiö R, Nurmesniemi H, Kuokkanen T, Perämäki P.
    Journal: Chemosphere; 2006 Dec; 65(11):2122-9. PubMed ID: 16887167.
    Abstract:
    A five-stage sequential leaching procedure was used to fractionate 13 heavy metals (Cd, Cu, Pb, Cr, Zn, Fe, Mn, Al, Ni, Co, As, V, Ba) and sulphur (S) in lime waste from the lime kiln at the causticizing plant of Stora Enso Oyj Veitsiluoto Pulp Mills at Kemi, Northern Finland, into the following fractions: (1) water-soluble fraction (H(2)O), (2) exchangeable fraction (CH(3)COOH), (3) easily reduced fraction (HONH(3)Cl), (4) oxidizable fraction (H(2)O(2)+CH(3)COONH(4)), and (5) residual fraction (HF+HNO(3)+HCl). Although metals were leachable in all fractions, the highest concentrations for most of the metals were observed in the residual fraction (stage 5). It was also notable that the total heavy metal concentrations in lime waste did not exceed the maximal allowable heavy metal concentrations for soil conditioner agents set by the ministry of the Agricultural and Forestry in Finland. The heavy metals concentrations in lime waste were also lower than the maximal allowable heavy metals concentrations of the European Union Directive 86/278/EEC on the protection of environment, and in particular of the soil, when sewage sludge is used in agriculture. The Ca concentration (420 g kg(-1); d.w.) was about 262 times higher than the typical value of 1.6 g kg(-1) (d.w.) in arable land in Central Finland. However, the concentration Mg (0.2 g kg(-1); d.w.) in lime waste was equal to the Mg concentration in arable land in the Central Finland. The lime waste has strongly alkaline pH ( approximately 12.8) and a neutralizing value (i.e. liming effect) of 47.9% expressed as Ca equivalents (d.w.). This indicates lime waste to be a potential soil conditioner and improvement as well as a pH buffer.
    [Abstract] [Full Text] [Related] [New Search]