These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In vitro differentiation of hepatic progenitor cells from mouse embryonic stem cells induced by sodium butyrate.
    Author: Zhou QJ, Xiang LX, Shao JZ, Hu RZ, Lu YL, Yao H, Dai LC.
    Journal: J Cell Biochem; 2007 Jan 01; 100(1):29-42. PubMed ID: 16888815.
    Abstract:
    Recently it was shown that embryonic stem (ES) cells could differentiate into hepatocytes both in vitro and in vivo, however, prospective hepatic progenitor cells have not yet been isolated and characterized from ES cells. Here we presented a novel 4-step procedure for the differentiation of mouse ES cells into hepatic progenitor cells and then hepatocytes. The differentiated hepatocytes were identified by morphological, biochemical, and functional analyses. The hepatic progenitor cells were isolated from the cultures after the withdrawal of sodium butyrate, which was characterized by scant cytoplasm, ovoid nuclei, the ability of rapid proliferation, expression of a series of hepatic progenitor cell markers, and the potential of differentiation into hepatocytes and bile duct-like cells under the proper conditions that favor hepatocyte and bile epithelial differentiation. The differentiation of hepatocytes from hepatic progenitor cells was characterized by a number of hepatic cell markers including albumin secretion, upregulated transcription of glucose-6-phosphatase and tyrosine aminotransferase, and functional phenotypes such as glycogen storage. The results from our experiments demonstrated that ES cells could differentiate into a novel bipotential hepatic progenitor cell and mature into hepatocytes with typical morphological, phenotypic and functional characteristics, which provides an useful model for the studies of key events during early liver development and a potential source of transplantable cells for cell-replacement therapies.
    [Abstract] [Full Text] [Related] [New Search]