These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chondrogenic differentiation on perlecan domain I, collagen II, and bone morphogenetic protein-2-based matrices.
    Author: Yang W, Gomes RR, Brown AJ, Burdett AR, Alicknavitch M, Farach-Carson MC, Carson DD.
    Journal: Tissue Eng; 2006 Jul; 12(7):2009-24. PubMed ID: 16889529.
    Abstract:
    Extracellular matrix (ECM) molecules in cartilage cooperate with growth factors to regulate chondrogenic differentiation and cartilage development. Domain I of perlecan (Pln) bears heparan sulfate chains that bind and release heparin binding growth factors (HBGFs). We hypothesized that Pln domain I (PlnDI) might be complexed with collagen II (P-C) fibrils to improve binding of bone morphogenetic protein-2 (BMP-2) and better support chondrogenesis and cartilage-like tissue formation in vitro. Our results showed that P-C fibrils bound more BMP-2 than collagen II fibrils alone, and better sustained BMP-2 release. Polylactic acid (PLA)-based scaffolds coated with P-C fibrils immobilized more BMP-2 than either PLA scaffolds or PLA scaffolds coated with collagen II fibrils alone. Multipotential mouse embryonic mesenchymal cells, C3H10T1/2, were cultured on 2-dimensional P-C fibrils or 3-dimensional P-C/BMP-2-coated (P-C-B) PLA scaffolds. Chondrogenic differentiation was indexed by glycosaminoglycan (GAG) production, and expression of the pro-chondrogenic transcription factor, Sox9, as well as cartilaginous ECM proteins, collagen II, and aggrecan. Immunostaining for aggrecan, perlecan, tenascin, and collagen X revealed that both C3H10T1/2 cells and primary mouse embryonic fibroblasts cultured on P-C-B fibrils showed the highest expression of chondrogenic markers among all treatment groups. Safranin O-Fast Green staining indicated that cartilage-like tissue was formed in the P-C-B scaffolds, while no obvious cartilage-like tissue formed in other scaffolds. We conclude that P-C fibrils provide an improved biomimetic material for the binding and retention of BMP-2 and support chondrogenic differentiation.
    [Abstract] [Full Text] [Related] [New Search]