These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis of complement by alveolar macrophages from patients with sarcoidosis. Author: Pettersen HB, Johnson E, Mollnes TE, Garred P, Hetland G, Osen SS. Journal: Scand J Immunol; 1990 Jan; 31(1):15-23. PubMed ID: 1689072. Abstract: Sarcoidosis is a granulomatous disorder of unknown aetiology. Alveolar macrophages (AM) in sarcoidosis release a variety of mediators important to the pathogenesis of the disease. Complement is essential for the inflammatory response and we investigated whether there were any major defects in the potential for sarcoidosis AM to synthesize complement in vitro. AM from 11 patients with active sarcoidosis and three healthy controls were cultured under serum-free conditions. There was a significant binding of polyclonal (anti-C5, -C6, -C7, -C8) and monoclonal anti-complement antibodies (anti-C3c and anti-C9 neoepitope (aE11] to agarose beads incubated with unstimulated AM for 24, 48, or 72 h. A significant and inhibitable production of soluble C3c, C5, C9, and S-protein was found in the harvested medium as detected by enzyme immunoassays. Activated C3 and C9 were also detected based on neoepitope expression. Presence of co-cultured agarose beads reduced the amount of soluble S-protein due to deposition on the agarose. We argue that the C9 neoepitope is an integral part of the terminal complement complex (TCC), both in the fluid and solid phase when bound to the agarose. In the fluid phase, SC5b-9 was generated, whereas the agarose-bound S-protein is assumed not to be associated with TCC on the beads. The results demonstrate for the first time that AM from sarcoidosis patients synthesize the functional alternative and terminal pathway of complement.[Abstract] [Full Text] [Related] [New Search]