These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: NK and LAK activities from human marrow progenitors. I. The effects of interleukin-2 and interleukin-1. Author: Keever CA, Pekle K, Gazzola MV, Collins NH, Gillio A. Journal: Cell Immunol; 1990 Mar; 126(1):211-26. PubMed ID: 1689220. Abstract: We have investigated the role of interleukin-2 (IL2) as a differentiation factor for human marrow-derived NK cell progenitors and have assessed the effects of interleukin-1 (IL1) on this activity. The effects of these cytokines on early NK cell precursors was determined by testing marrow which had been depleted of mature cells and of CD2+ cells by treatment with soybean agglutinin and sheep erythrocytes (SBA-E-BM). The cytolytic activities of the SBA-E-BM were tested in 51Cr release assays following 7-8 days of liquid culture. K562 targets were used to assess NK activity and NK-resistant Daudi targets were used to measure lymphokine-activated killer (LAK) cell activity. Neither NK nor LAK activity were measurable in marrow incubated in medium without cytokines, or in medium containing IL1 alone. In contrast, culture in medium containing IL2 resulted in a dose-dependent development of lytic activity. NK and LAK activities could be differentiated by the percentage of cultures in which the activity developed, the dose of IL2 required, the time kinetics of induction, and the effect of depletion of residual cells with NK phenotype prior to culture. The most lytically active effectors of both activities, however, were CD56+. Immunofluorescence analyses before and after culture with IL2 revealed that Leu19+ (CD56) cells increased from less than 2% to as much as 17% of the total marrow cells and showed the appearance of a population of CD56+CD16- cells. The addition of IL1 to the marrow cultures increased NK activity when suboptimal amounts of IL2 were used (less than or equal to 100 U/ml), but did not increase LAK activity at any concentration of IL2. A higher number of NK cells, as well as MY7+(CD13+) myeloid cells were recovered from cultures containing IL1 plus IL2, indicating that NK cells as well as myeloid cells had a growth advantage in the presence of IL1. IL2 receptor (CD25) expression was low in all cultures but was consistently higher in cultures containing IL1 and IL2, however, CD25 was not coexpressed on NK cells. These studies indicate that early NK cell precursors can grow and differentiate in response to IL2 and that NK and LAK lytic activities may be acquired at different developmental stages. IL1 may serve to promote the responsiveness of NK cell progenitors to low concentration of IL2 by a mechanism which may not require expression of CD25.[Abstract] [Full Text] [Related] [New Search]