These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Gamma band oscillations reveal neural network cortical coherence dysfunction in schizophrenia patients. Author: Light GA, Hsu JL, Hsieh MH, Meyer-Gomes K, Sprock J, Swerdlow NR, Braff DL. Journal: Biol Psychiatry; 2006 Dec 01; 60(11):1231-40. PubMed ID: 16893524. Abstract: BACKGROUND: Gamma band activity has been associated with many sensory and cognitive functions, and is important for cortico-cortical transmission and the integration of information across neural networks. The aims of the present study were to determine if schizophrenia patients have deficits in the generation and maintenance of coherent, synchronized oscillations in response to steady-state stimulation, and to examine the clinical and cognitive correlates of the electroencephalography (EEG) oscillatory dynamics. METHODS: Schizophrenia patients (n = 100) and nonpsychiatric subjects (n = 80) underwent auditory steady-state event-related potential testing. Click trains varying in rate of stimulation (20, 30, and 40 Hz) were presented; EEG-evoked power and intertrial phase synchronization were obtained in response to each stimulation frequency. Subjects also underwent clinical and neurocognitive assessments. RESULTS: Patients had reductions in both evoked power and phase synchronization in response to 30- and 40-Hz stimulation but normal responsivity to 20-Hz stimulation. Maximal deficits were detected in response to 40-Hz stimulation. A modest association of reduced working memory performance and 40-Hz intertrial phase synchronization was present in schizophrenia patients (r = .32, p <.01). CONCLUSIONS: Schizophrenia patients have frequency-specific deficits in the generation and maintenance of coherent gamma-range oscillations, reflecting a fundamental degradation of basic integrated neural network activity.[Abstract] [Full Text] [Related] [New Search]