These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nitric oxide (NO) detection by DAF fluorescence and chemiluminescence: a comparison using abiotic and biotic NO sources.
    Author: Planchet E, Kaiser WM.
    Journal: J Exp Bot; 2006; 57(12):3043-55. PubMed ID: 16893978.
    Abstract:
    Because of controversies in the literature on nitric oxide (NO) production by plants, NO detection by the frequently used diaminofluorescein (DAF-2 and DAF-2DA) and by chemiluminescence were compared using the following systems of increasing complexity: (i) dissolved NO gas; (ii) the NO donor sodium nitroprusside (SNP); (iii) purified nitrate reductase (NR); and (iv) tobacco cell suspensions. Low (physiological) concentrations (< or =1 nM) of dissolved NO could be precisely quantified by chemiluminescence, but caused no DAF-2 fluorescence. In contrast to NO gas, SNP, NR, or cell suspensions produced both good DAF fluorescence and chemiluminescence signals which were completely (chemiluminescence) or partly (DAF fluorescence) prevented by NO scavengers. Signal strength ratios between the two methods were variable depending on the NO source, and eventually reflect variable NO oxidation. DAF fluorescence in cell suspension cultures was also increased by an as yet unidentified compound(s) released from cells into the medium. These compounds gave no chemiluminescence signal and were not produced by NR-free mutants. Their production was stimulated by anoxia, by inhibitors of mitochondrial electron transport, and by the fungal elicitor cryptogein. Thus, changes in DAF fluorescence are not necessarily indicative for NO production, but may also reflect NO oxidation and/or production of other DAF-reactive compounds.
    [Abstract] [Full Text] [Related] [New Search]