These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: WASP-interacting protein is important for actin filament elongation and prompt pseudopod formation in response to a dynamic chemoattractant gradient.
    Author: Myers SA, Leeper LR, Chung CY.
    Journal: Mol Biol Cell; 2006 Oct; 17(10):4564-75. PubMed ID: 16899512.
    Abstract:
    The role of WASP-interacting protein (WIP) in the process of F-actin assembly during chemotaxis of Dictyostelium was examined. Mutations of the WH1 domain of WASP led to a reduction in binding to WIPa, a newly identified homolog of mammalian WIP, a reduction of F-actin polymerization at the leading edge, and a reduction in chemotactic efficiency. WIPa localizes to sites of new pseudopod protrusion and colocalizes with WASP at the leading edge. WIPa increases F-actin elongation in vivo and in vitro in a WASP-dependent manner. WIPa translocates to the cortical membrane upon uniform cAMP stimulation in a time course that parallels F-actin polymerization. WIPa-overexpressing cells exhibit multiple microspike formation and defects in chemotactic efficiency due to frequent changes of direction. Reduced expression of WIPa by expressing a hairpin WIPa (hp WIPa) construct resulted in more polarized cells that exhibit a delayed response to a new chemoattractant source due to delayed extension of pseudopod toward the new gradient. These results suggest that WIPa is required for new pseudopod protrusion and prompt reorientation of cells toward a new gradient by initiating localized bursts of actin polymerization and/or elongation.
    [Abstract] [Full Text] [Related] [New Search]